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Abstract

In this article, an extension of the strip element method has been developed to investigate the transient response of

symmetric laminated plates. In this method, the two-dimensional governing equations based on the classical laminated

plate theory is reduced to a set of ordinary di�erential equations using the principle of minimum potential energy. The

resulting set of ordinary di�erential equations are then solved analytically to obtain the dynamic responses in the

frequency domain. The Fourier transform technique is then used to obtain the time domain response. An exponential

window method is employed to avoid singularities associated with Fourier integration. Transient responses of a

rectangular symmetric laminated plate are presented for various loading and boundary conditions. The results obtained

using the strip element method were found to compare favorably with exact or analytical solutions available in the

literature. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The transient response of laminated composite plates to dynamic loading has received much attention
from designers due to increasing applications of composite in high performance aircraft, vehicles and
vessels. In the analysis of laminated plates, which are subjected to dynamic loading, the classical laminated
plate theory (CLPT) (e.g., Reddy, 1997) is widely used due to its simplicity. More complex plate theories
have also been used, such as the ®rst-order shear deformation theory (FSDT) (Whitney, 1969; Whitney and
Pagano, 1970; Reissner, 1972), the third-order laminated theory (Reddy, 1984b) and others (Reddy,
1984a,b, 1985).

It is very di�cult to obtain the exact solution for the dynamic response of laminated composite plate.
Currently, the exact solution can only be available for certain plate theories applied to simply supported
rectangular plates (Khdeir and Reddy, 1989). As a result, approximate methods have been proposed for
dynamic analysis of the laminated plates.
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Currently, most of the works available in the literature are for plates with simply supported boundary
conditions. Lu (1996) employed the Rayleigh±Ritz method and the method of superposition of normal
modes to calculate the dynamic response of laminated angle-ply plates with clamped boundary conditions
which are subjected to explosive loading. However, numerical methods have to be used if the problem
involves complex geometries and boundary conditions.

Many numerical methods have been proposed for the dynamic response analysis of plates. Out of these
methods, the ®nite element method (FEM) has become the universally applicable technique for solving
boundary and initial value problems. Various types of thin-plate bending elements have been discussed
(Zienkiwicz, 1977; Reddy and Miravete, 1995). In the past years, Reismann (1968), Reismann and Lee
(1969) and Lee and Reismann (1969) have analyzed simply supported rectangular isotropic plates, which
are subjected to suddenly applied uniformly distributed load over a square area on the plate. The transient
®nite element analysis of isotropic plate was also carried out by Rock and Hinton (1974) for thick and thin
plates. Akay (1980) determined the large de¯ection transient response of isotropic plates using a mixed
FEM.

As for composite plates analysis, Reddy (1983) presented ®nite element results for the transient analysis
of layered composite plates based on the FSDT. Mallikarjuna and Kant (1988) presented an isoparametric
®nite element formulation based on a high-order displacement model for dynamic analysis of multi-layer
symmetric composite plate.

Although FEM is an extremely versatile and powerful technique, it has certain disadvantages: large
quantities of input data make implementation tedious, and one is often compelled to employ automatic
mesh and load generation schemes; many lower order elements will not yield acceptable stress results,
necessitating the use of stress averaging or interpolation; and computer core requirement can often be
extremely large. Thus, there have been e�orts to formulate alternative methods, which lead to the devel-
opment of the ®nite strip method (FSM) (Cheung, 1976) and boundary element method (BEM) (Beskos,
1987). The BEM has been successfully used for a great variety of problems, though a major de®ciency is
that it is di�cult to apply for anisotropic and inhomogeneous solids, as there are no simple applicable
GreenÕs function available.

Since then, Liu and Achenbach (1994, 1995) proposed the strip element method (SEM) which has been
successful in solving plane-strain problems. Subsequently, Wang et al. (1997) developed the SEM for static
bending analysis of orthotropic plates. The purpose of this article is to further extend the SEM for transient
analysis of symmetric laminated plates. SEM formulations for dynamic analysis of laminated plate were
derived, and a SEM program was developed. The program is ®rst used to investigate the dynamic response
of the plate in the frequency domain. The Fourier transform technique is then employed to obtain the time
domain response, and an exponential window method is introduced to avoid the singularities from Fourier
integration. The transient responses of rectangular symmetric laminated plates are presented for various
loading and boundary conditions. The results obtained using SEM are compared with exact or analytical
solutions. Very good agreements of this comparison were observed.

2. A brief of plate theory for laminates

Consider a thin plate as shown in Fig. 1. The plate consists of K layers of ®ber reinforced laminated
composite lying in the x±y plane, and the overall thickness is denoted by H. The reference plane z� 0 is
located at the undeformed mid-plane of the plate. The z axis is taken as positive upward from the mid-
plane. The kth layer is located between the points z � zkÿ1 and z � zk in the thickness direction and its
principal material coordinate oriented at an angle, ak, to the laminate coordinate x as shown in Fig. 2.

Let u, v and w denote the displacements in the coordinate directions of x, y and z, respectively. The
displacements u and v can be expressed by w according to the following CLPT:

242 Y.Y. Wang et al. / International Journal of Solids and Structures 38 (2001) 241±259



u � ÿz
ow
ox
; v � ÿz

ow
oy
: �1�

The strain±displacement relations for the plate can be written in the matrix form as

ex

ey

cxy

8<:
9=; � ÿzLw; �2�

where

LT � o2

ox2

o2

oy2
2

o2

oxoy

� �
�3�

is the di�erential operator matrix with superscript T denoting transposed matrix.

Fig. 1. The coordination system of the composite laminated plate.

Fig. 2. Geometry and coordination system of the kth layer of a rectangular plate in the x±y plane with ®ber orientation of ak .
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According to generalized HookeÕs law, the stress±strain relation for the kth layer in the laminate co-
ordinates is

rx

ry

sxy

8<:
9=;

k

�
�Q11

�Q12
�Q13

�Q12
�Q22

�Q23
�Q13

�Q23
�Q33

24 35k ex

ey

cxy

8<:
9=; � �Q k

ex

ey

cxy

8<:
9=;; �4�

where �Q k is given by

�Q k � TQ kT T; �5�

T �
l2 m2 lm
m2 l2 ÿlm
ÿ2lm 2lm l2 ÿ m2

24 35; �6�

l � cosak; m � sinak: �7�
In Eq. (5), Q k is the matrix of material constants for the kth layer in the principal material coordinates with
its components are de®ned as

Q11 � E1

1ÿ m12m21

; Q12 � m12E2

1ÿ m12m21

� m21E1

1ÿ m12m21

; Q22 � E2

1ÿ m12m21

;

Q66 � G12; Q16 � Q26 � 0; �8�
where E1 and E2 are YoungÕs moduli in the directions parallel and perpendicular to the ®bers, respectively;
G12 is the shear modulus and m12 and m21 are PoissonÕs ratios.

In the present study, only symmetrically stacked laminates are considered. As such, the transverse
bending and in-plane stretching are decoupled. The bending moment vector can be written as follows:

Mx

My

Mxy

8<:
9=; � ÿDLw; �9a�

Qx � oMx

ox
� oMxy

oy
; Qy � oMxy

ox
� oMy

oy
; �9b�

where the matrix D is the coe�cient matrix of the bending sti�ness, which is given as

D �
D11 D12 D16

D12 D22 D26

D16 D26 D66

24 35; �10�

where

Dij � 1

3

XN

k�1

� �Qij�k�z3
k ÿ z3

kÿ1�: �11�

The lateral mid-plane de¯ection of the thin plate is assumed to satisfy the governing partial di�erential
equation:

W � D11

o4w
ox4
� 4D16

o4w
ox3 oy

� 2�D12 � 2D66� o4w
ox2 oy2

� 4D26

o4w
oxoy3

� D22

o4w
oy4
� qH

o2w
ot2
ÿ q � 0; �12�

where q is the distributed transverse force on the plate.
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3. Formulation of strip element method

To use the SEM in the vibration analysis of a rectangular plate, an in®nite length plate is ®rst considered.
As shown in Fig. 3, the in®nite length plate occupies the region of ÿ16 x61 and 06 y6 b, whereas the
problem domain is bounded by ÿa=26 x6 a=2, 06 y6 b and ÿH=26 z6H=2. The boundaries are de-
noted by S1, S2, S3 and S4. The in®nite plate is divided in the y direction into N strip elements. The dis-
placement ®eld in an element is assumed to be of the form:

w � N�y�Ve�x; t�; �13�
where matrix N�y� and vector Ve�x� are given by

N�y� � n1�y� n2�y� n3�y� n4�y� n5�y� n6�y�� �; �14�

Ve�x; t� � w1�x; t� h1�x; t� w2�x; t� h2�x; t� w3�x; t� h3�x; t�� �T

� v1�x; t� v2�x; t� v3�x; t� v4�x; t� v5�x; t� v6�x; t�� �T �15�
and wi �i � 1; 2; 3� are the lateral de¯ections on the node lines. hi �i � 1; 2; 3� are the rotation angles on the
node lines as given by hi � ow=oyjy�yi

. The elements in matrix N�y� are obtained using Hermite interpo-
lation functions (Wang et al., 1997):

n1�y� � 1ÿ 23
y2

b2
e

� 66
y3

b3
e

ÿ 68
y4

b4
e

� 24
y5

b5
e

;

n2�y� � y 1

�
ÿ 6

y
be

� 13
y2

b2
e

ÿ 12
y3

b3
e

� 4
y4

b4
e

�
;

n3�y� � 16
y2

b2
e

ÿ 32
y3

b3
e

� 16
y4

b4
e

;

n4�y� � y
�
ÿ 8

y
be

� 32
y2

b2
e

ÿ 40
y3

b3
e

� 16
y4

b4
e

�
;

n5�y� � 7
y2

b2
e

ÿ 34
y3

b3
e

� 52
y4

b4
e

ÿ 24
y5

b5
e

;

n6�y� � y
�
ÿ y

be

� 5
y2

b2
e

ÿ 8
y3

b3
e

� 4
y4

b4
e

�
;

�16�

where be is the width of the strip element.

Fig. 3. The in®nite plate is divided to strip elements in y direction, whereas the region bounded by S1, S2, S3 and S4 is the problem

domain.
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Generally, the term, W, in Eq. (12) is not zero when the displacement ®eld is expressed as in Eq. (13). By
applying the principle of minimum potential energy to the strip element in the in®nite plate, we obtain the
following equation:Z be

0

W dwdy � Ry dVe�x; t� � T dVe�x; t�; �17�

where

Ry � ÿ oMyx

ox
� Qy

� �����
y�0

My

��
y�0

0 0
oMyx

ox
� Qy

� �����
y�be

ÿMy

��
y�be

� �
�18�

and T is the external traction vector acting on the boundary lines of the element. Using Eqs. (9) and (12),
(13), (17) and (18), we can obtain a set of approximate ordinary di�erential equations for an element (Wang
et al., 1997):

Be
1

o4Ve

ox4
� Be

2

o3Ve

ox3
� Be

3

o2Ve

ox2
� Be

4

oVe

ox
� Be

5Ve � Be
6

o2Ve

ot2
ÿ Fe � Te: �19�

In the above expression, the matrices Be
1, Be

3, Be
5 and Be

6 are symmetric, whereas Be
2 and Be

4 are anti-
symmetric. The coe�cient matrices Be

i (i� 1±6) and force vector Fe due to the distributed load q are shown
in Appendix A. By assembling all the strip elements of the domain, a system of approximate ordinary
di�erential equations for the whole domain can be obtained:

B1

o4V

ox4
� B2

o3V

ox3
� B3

o2V

ox2
� B4

oV

ox
� B5V � B6

o2V

ot2
� P �20�

in which P � F � T, and T expresses the vector of concentrated force on the node line. The matrices
Bi �i � 1±6� and F can be obtained by assembling the corresponding matrices of adjacent elements as in the
FEM. If the plate is divided into N strip elements, then Bi (i� 1±6) will be M �M �M � 4N � 2� matrices.

4. Solution in the frequency domain

Eq. (20) is a set of fourth-order di�erential equations, where V and P are functions of x and t. To solve
this equation, the Fourier transformation with respect to the time t is introduced:

~V�x;x� �
Z 1

ÿ1
V�x; t�eÿixt dt; �21�

~P�x;x� �
Z 1

ÿ1
P�x; t�eÿixt dt; �22�

where x is the angular frequency and ``�'' stands for a variable in the frequency domain. Application of the
Fourier transform to Eq. (20) leads to the following ordinary di�erential equation:

B1

d4 ~V

dx4
� B2

d3 ~V

dx3
� B3

d2 ~V

dx2
� B4

d ~V

dx
� B5

~V ÿ x2B6
~V � ~P: �23�

This equation can be solved analytically. Its general solution has two parts, which are the complementary
solution which satis®es the associated homogeneous equation of Eq. (23), and the particular solution which
satis®es Eq. (23).
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4.1. Complementary solution

The complementary solution can be obtained by solving the associated homogeneous equation of Eq.
(23) (~P � 0). Assuming

~V � d0 exp�ikx� �24�
and substituting it into the homogeneous equation of Eq. (23). Thus, we have the following equation:

�k4B1 ÿ ik3B2 ÿ k2B3 � ikB4 � B5 ÿ x2B6�d0 � 0: �25�
This equation can be converted to a standard eigenvalue equation with respect to k:

0 I 0 0
0 0 I 0
0 0 0 I

ÿB5 � x2B6 ÿiB4 B3 iB2

2664
3775

d0

kd0

k2d0

k3d0

8>><>>:
9>>=>>; � k

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 B1

2664
3775

d0

kd0

k2d0

k3d0

8>><>>:
9>>=>>;: �26�

Eq. (26) can be solved to obtain 4M eigenvalues kj �j � 1; 2; . . . ; 4M� and eigenvectors, which are the
functions of x. The ®rst quarter of the jth eigenvectors corresponds to vector d0, and is denoted by vector
Uj (x), where

UT
j �x� � /j1 /j2 � � � /jM

� 	
: �27�

The complementary solution for the displacement can be written by superposition of these eigenvectors as
shown below:

~Vc�x;x� �
X4M

j�1

Cj�x�Uj�x� exp�ikjx� � G�x;x�C�x�; �28�

where superscript c indicates the complementary solution and

G�x;x� �
/11 exp�ik1x� /21 exp�ik2x� � � � /L1 exp�ikLx�
/12 exp�ik1x� /22 exp�ik2x� � � � /L2 exp�ikLx�

..

. ..
. . .

. ..
.

/1M exp�ik1x� /2M exp�ik2x� � � � /LM exp�ikLx�

26664
37775 �29�

with L � 4M . In Eq. (28), C is a constant vector, which will be determined by using the boundary con-
ditions on S2 and S4 after the particular solution is obtained.

4.2. Particular solution

In order to obtain the particular solution of Eq. (23), the Fourier transformation with respect to co-
ordinate x is introduced as follows:

�~V
p�k;x� �

Z 1

ÿ1
~Vp�x;x�eÿikx dx; �30�

�~P
p�k;x� �

Z 1

ÿ1
~Pp�x;x�eÿikx dx; �31�

where superscript p indicates the particular solution and ``±''stands for a variable in the transform domain.
Application of the Fourier transform to Eq. (23) leads to the following equation in the transform domain:
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�~P � �k4B1 ÿ ik3B2 ÿ k2B3 � ikB4 � B5 ÿ x2B6� �~Vp
: �32�

This equation can be rewritten as

p � A� ÿ kB�d; �33�
where

p � 0 0 0 ÿ�~P
T

n oT

; d � �~V
pT

k �~V
pT

k2 �~V
pT

k3 �~V
pT

n oT

; �34�

A �
0 I 0 0
0 0 I 0
0 0 0 I

ÿB5 � x2B6 ÿiB4 B3 iB2

2664
3775; B �

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 B1

2664
3775: �35�

Applying the modal analysis technique (Liu and Achenbach, 1995), we arrive at

d �
X4M

m�1

/L
mp/R

m

�km ÿ k�Bm
; �36�

where

Bm � /L
mB/R

m �37�
and the eigenvalues km, left eigenvectors /L

m and right eigenvectors /R
m corresponding to the homogeneous

equation (33) can obtained by solving the following equations:

/L
m A� ÿ kmB� � 0; A� ÿ kmB�/R

m � 0: �38�
The /R

m and /L
m can be partitioned in the form of

/R
m �

/R
m1

/R
m2

/R
m3

/R
m4

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
; /L

m � /L
m1 /L

m2 /L
m3 /L

m4

� 	
; �39�

where /R
mi �i � 1; 2; 3; 4� and /L

mj �j � 1; 2; 3; 4� have the same dimension. From Eqs. (34), (36) and (39), we
obtain

�~V
p�k;x� � ÿ

X4M

m�1

/L
m4

�~P/R
m1

�kÿm k�Bm
: �40�

Once the external load is speci®ed, the vector of the load Fourier transformation
�~P can then be obtained. By

applying the inverse Fourier transformation to Eq. (40), the particular solution of Eq. (23) can be obtained as

~Vp�x;x� � 1

2p

Z 1

ÿ1
�~V

p�k;x�eikxdk � 1

2p

Z 1

ÿ1

X4M

m�1

/L
m4

�~P/R
m1

�k ÿ km�Bm
eikx dk: �41�

The general solution of Eq. (23) is the sum of the complementary solution given by Eq. (28) and the
particular solution given by Eq. (41):

~V�x;x� � ~V c�x;x� � ~Vp�x;x� � G�x;x�C�x� � ~Vp�x;x�: �42�
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4.3. Determination of constant vector C using boundary conditions

Eq. (42) gives the fundamental solution for the in®nite plate, in which the constant vector C with 4M
elements is unknown. To obtain a special solution for the problem domain, the boundary conditions on S2

and S4 have to be used to determine the constant vector C. There are 2N � 1 node lines and two boundary
conditions on each node line can be obtained from the CLPT. The boundary conditions in CLPT are
summarized as follows:

w � 0;
ow
ox
� 0 �for the clamped edges�; �43�

w � 0
o2w
ox2
� 0 �for simply supported boundary�: �44�

As for free boundary conditions, it follows that

Mx � 0;
oMxy

oy
� Qx � 0: �45�

Therefore, there are only 2M boundary conditions on S2 and S4, which is insu�cient to determine the 4M
constants. Additional 2M boundary conditions are therefore needed. Wang et al. (1997) developed the
boundary conditions in SEM for orthotropic plates, where the additional boundary conditions to be in-
troduced are

h � 0;
oh
ox
� 0 �for clamped boundary�; �46�

h � 0;
o2h
ox2
� 0 �for simply supported boundary�; �47�

oMx

oy
� 0;

o
oy

oMxy

oy

�
� Qx

�
� 0 �for free boundary�: �48�

It can be shown that these boundary conditions can also be applied in this work; thus, the boundary
conditions in SEM are summarized as follows:

Clamped supported boundary

~V � 0;
d ~V

dx
� 0: �49�

Simply supported boundary

~V � 0;
d2 ~V

dx2
� 0: �50�

Free boundary

~Mx � 0;
o ~Mxy

oy
� ~Qx � 0;

o ~Mx

oy
� 0;

o
oy

o ~Mxy

oy

 
� ~Qx

!
� 0; �51�

where the vectors express the corresponding values on the node lines in the frequency domain. Hence, the
constant vector C can be determined using the above boundary conditions, which gives the exact number of
boundary conditions. Thus, the responses in the frequency domain can successfully be obtained.
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5. Solution in the time domain

The inverse Fourier transformation to Eq. (42) gives the solution in the time domain:

V�x; t� � 1

2p

Z 1

ÿ1
~V�x;x�eixtdx: �52�

The integration of Eq. (52) usually has to be carried out numerically. However, for the undamped plates as
considered in this article, di�culties with the integration result from singularities of ~V�x;x� at x � 0 and at
the cut-o� frequencies (k� 0), as discussed by Vasudevan and Mal (1985). To overcome these di�culties,
the exponential window method (EWM) is used. Liu and Achenbach (1994) calculated the response of wave
scattering in an in®nite plate using the EWM. The basic idea of the EWM is to introduce a complex fre-
quency, xÿ ig, by adding to it a small imaginary part, ig, where x is real and g is positive and does not
depend on x. Hence, the Fourier transform pair given by Eqs. (21) and (52) can equivalently be written as

~V�x;xÿ ig� �
Z 1

ÿ1
eÿgtV�x; t�eÿixt dt; �53�

V�x; t� � egt

2p

Z 1

ÿ1
~V�x;xÿ ig�eixt dx; �54�

and the Fourier transform of external force in Eq. (22) is

~P�x;xÿ ig� �
Z 1

ÿ1
eÿgtP�x; t�eÿixt dt: �55�

It is to be noted that the x in Eqs. (23)±(42) should be replaced by xÿ ig.
Generally, the external force is loaded on the plate only for a certain time duration in the transient

analysis; thus, Eq. (55) takes the form

~P�x;xÿ ig� �
Z td

0

eÿgtP�x; t�eÿixt dt; �56�

where td is the duration of the external force. Eq. (54) is used to obtain the displacement response in the
time domain, which avoids the singularity of ~V�x;x�.

6. Numerical examples

The transient analyses of anisotropic laminated composite plates are carried out by using a SEM pro-
gram written in FORTRANFORTRAN 7777. In the present study, zero initial conditions are assumed.

Example 1. Considering a three-layer cross-ply (0°/90°/0°) square laminated plate, where all layers are
assumed to be of the same thicknesses and material properties. The material properties are given as

E1 � 172:369 GPa; E2 � 6:895 GPa; G12 � 3:448 GPa; m12 � 0:25; q � 1603:03 kg=m3:

The total thickness of the plate is taken to be H � 3:81 cm, and the length of the plate is a � b � 20H .
The load is sinusoidally distributed on the whole surface of the plate and varies with time according to

one of the expressions given below:

q�x; y; t� � q0 sinp
1

2

�
ÿ x

a

�
sin

py
b

F �t�; �57�
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F �t� �

sin�pt=t1�
0

�
1

0

�
�1ÿ t=t1�
0

�

06 t1

t > t1

�
sine loading;

06 t6 t1

t > t1

�
step loading;

06 t6 t1

t > t1

�
triangular loading;

eÿct explosive blast loading;

�58�

in which t1 � 0:006 s and c � 330 sÿ1. The intensity of the transverse load is taken to be q0 � 3:448 MPa.
The integration in Eq. (41) for a line load acting at x� x0 can be easily obtained using CauchyÕs theorem

(Wang et al., 1997), and the particular solution is given as

Fig. 4. Time history of the center de¯ection for simple supported [0°/90°/0°] square laminated plate under various loading. A com-

parison of the SEM solution (the real line) and exact solution (the cross).
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~Vp�x;x� �

X2M

m�1

i
/L�

m4
~P/R�

m1

B�m
eik�m �xÿx0�; x P x0

P2M

m�1

ÿ i
/Lÿ

m4
~P/Rÿ

m1

Bÿm
eikÿm �xÿx0�; x < x0

8>>><>>>: �59�

where ``+'' denotes variables corresponding to the positive real eigenvalues or complex eigenvalues with
positive imaginary part, whereas ``ÿ'' denotes variables evaluated for the other cases of the eigenvalues.

In the case of a distributed load in the x direction

p�x; y; t� � f �x�p�y; t�; �60�
the particular solution can be obtained from the following integration:

~Vp �
Z x

ÿa=2

f �x�
X2M

m�1

i
/L�

m4
~P/R�

m1

B�m
eik�m �xÿx0� dx�

Z a=2

x
f �x�

X2M

m�1

ÿ i
/Lÿ

m4
~P/Rÿ

m1

Bÿm
eikÿm �xÿx0� dx: �61�

Thus, the particular solution for the sinusoidally distributed load expressed by Eq. (57) can be carried
out using Eq. (61), which is given as:

~Vp �
X2M

m�1

i
/Lÿ

m4
~P/Rÿ

m1

Bÿm

p
a sin px

a ÿ ikÿm cos px
a ÿ p

a eikÿm �xÿa=2�

ÿ�kÿm �2 � p
a

ÿ �2

�
X2M

m�1

i
/L�

m4
~P/R�

m1

B�m

p
a sin px

a ÿ ik�m cos px
a � p

a eik�m �x�a=2�

ÿ�k�m �2 � �pa�2
: �62�

Fig. 4 shows the time history of the transverse de¯ection at the center of the plate for various loads. The
comparisons of the SEM results with exact solutions (Khdeir and Reddy, 1989) are shown. From Fig. 4, it
is observed that the SEM solutions are in very good agreement with the exact solutions.

Fig. 5. The time history of the dimensionless normal stress �rxxversus time for simple supported [0°/90°/0°] square laminated plate under

step loading. Comparison of the SEM solution (the real line) and exact solution (the cross).
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Fig. 6. The time history of the de¯ection on the center of the [30°/ÿ30°/ÿ30°/30°] square laminated plate, which is fully clamped and

subjects to conventional blast. Comparison of SEM solution (the real line) and Rayleigh±Ritz solution (the cross).

Fig. 7. The time history of the center de¯ection of the [30°/ÿ30°/ÿ30°/30°] square laminated plate which subjects to conventional blast.

The plate is clamped at two opposite edges and simply supported at the other two edges.
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The stress responses in the time domain can be obtained from the displacement distribution using a
similar method as for the de¯ection response. The normal stress response in time domain for sine loading
and the comparison of SEM solutions with exact solutions are given in Fig. 5, in which the dimensionless
normal stress is de®ned as

�rxx � rxx�a=2; b=2;H=2�=q0: �63�
Again, a very good agreement is achieved. It can be seen that the stress response curve is very similar to the
displacement response curve. This conclusion is similar for other load cases.

Example 2. A four-layer angle-ply square laminated plate with symmetrically stacking sequences (30°/)30°/
)30°/30°) is considered. All layers are assumed to have the same thicknesses and material properties given
by

E1 � 131:69 GPa; E2 � 8:55 GPa; G12 � 6:67 GPa; m12 � 0:3; q � 1610 kg=mÿ3:

The dimensions of the plate are

a1 � 1:27 m; b1 � 1:27 m; H � 0:0254 m:

The plate is subjected to a conventional blast while the pressure can be considered uniformly distributed
over the plate, which can be expressed as

q�x; y; t� � q0 1

�
ÿ t

tp

�
eÿat=tp ; �64�

where the parameters in Eq. (64) are taken as

a � 1:98; tp � 4 ms; q0 � 68:95 kPa:

These data are taken from Lu (1996).

Fig. 8. As in Fig. 7, but the plate is clamped at two opposite edges and free at the other two edges.
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For the uniformly distributed external load along the x axis, the particular solution in Eq. (41) is given as

~Vp �
X2M

m�1

/L�
m4

~P/R�
m1

B�m

eik�m �x�a=2� ÿ 1

k�m
�
X2M

m�1

/Lÿ
m4

~P/Rÿ
m1

Bÿm

eikÿm �xÿa=2� ÿ 1

kÿm
: �65�

The results for the fully clamped plate are shown in Fig. 6. The comparison with LuÕs results using
Rayleigh±Ritz method shows a good agreement.

The e�ects of the boundary conditions of composite laminated plates have been shown in Figs. 7 and 8.
Fig. 7 shows the de¯ection versus time of the square composite laminated plate for two boundary condition
cases: (1) S1 and S3 clamped, S2 and S4 simply supported; (2) S1 and S3 simply supported, S2 and S4

clamped.
It is known that the de¯ection and frequency of a square isotropic plate are the same for the above two

boundary condition cases. However, this is not true in the case of composite laminated plates, in which
both the de¯ection and frequency are di�erent for the two types of boundary conditions. This fact can also
been found from Fig. 8, in which two boundary condition cases for the square composite laminated plate
are: (1) S1 and S3 clamped, S2 and S4 free; (2) S1 and S3 free, S2 and S4 clamped.

Fig. 9. The de¯ection of the [30°/ÿ30°/ÿ30°/30°] square laminated plate which subjects to conventional blast. The plate is clamped on

edges S1 and S3 and simply supported on edges S2 and S4.
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The deformation of the plate at di�erent times is shown in Figs. 9 and 10, in which the plate was clamped
on two opposite edges and simply supported on the other two edges. In these ®gures, the transverse de-
formations have been increased in scale. It is found that the deformation distribution is di�erent for those
two types of boundary conditions also. From the above discussion, it is concluded that the composite
laminated plates must be designed carefully according to the boundary conditions of the practical appli-
cations.

7. Discussion and conclusions

The SEM for the dynamic analysis of laminated composite plates has been presented based on the
CLPT. This method has many advantages:
1. It requires a small memory during computation.
2. It requires fewer elements to achieve the required accuracy. In this article, only four elements are used.
3. The SEM achieves a high accuracy as both de¯ection and rotation angle are continuous along the node

lines.

Fig. 10. As in Fig. 9, but the plate is simply supported on S1 and S3 and clamped on S2 and S4.
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4. Generally the integration in Eq. (41) for a distributed load of a given function can be carried out ana-
lytically. This also improves the accuracy of the SEM solution.
When the SEM is applied to transient analysis of laminated composite plates, the Fourier transform

technique is used to investigate dynamic response in the frequency domain, and the time domain response is
obtained using the inverse Fourier transformation. An exponential window method is introduced to avoid
singularities in the Fourier integration. Numerical solutions obtained for laminated composite plates with
various loading and boundary conditions indicate that SEM is a very accurate numerical method.

Appendix A

Matrices in Eq. (19):
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1 � D11

523be

3465

19b2
e

2310
4be

63

ÿ8b2
e

693
131be

6930

ÿ29b2
e

13860

2b3
e

3465

2b2
e

315

ÿb3
e

1155

29b2
e

13860

ÿb3
e

4620

12be

315
0 4be

63

ÿ2b2
e

315

32b3
e

3465

8b2
e

693

ÿb3
e

1155

sym 523be

3465

ÿ19b2
e

2310

2b3
e

3465

266666666666664

377777777777775
;

B e
2 � 4D16

0 23be

630
8

21
ÿ32be

315
5
42

ÿbe

90

0 8be

315

ÿ2b2
e

315
be

90

ÿb2
e

1260

0 64be

315
8
21

ÿ8be

315

asy 0 32be

315

ÿ2b2
e

315

0 23be

630

0

26666666664

37777777775
;

Be
3 � 2D12

ÿ278
105be

ÿ118
210

256
105be

ÿ8
21

22
105be

1
70

ÿ2be

45
ÿ8
105

4be

315
ÿ1
70

be

126

ÿ512
105be

0 256
105be

ÿ8
105

ÿ128be

315
8

21
4be

315

sym ÿ278
105be

118
210

ÿ2be

45

2666666666664

3777777777775

� 4D66

ÿ278
105be

ÿ13
210

256
105be

ÿ8
21

22
105be

1
70

ÿ2be

45
ÿ8
105

4be

315
ÿ1
70

be

126

ÿ512
105be

0 256
105be

ÿ8
105

ÿ128be

315
8

21
4be

315

sym ÿ278
105be

13
210

ÿ2be

45

2666666666664

3777777777775
;

Y.Y. Wang et al. / International Journal of Solids and Structures 38 (2001) 241±259 257



Be
4 � 4D26

0 ÿ79
35be

32
7b2

e

128
35be

ÿ32
7b2

e

31
35be

0 ÿ48
35be

32
35

ÿ31
35be

11
70

0 ÿ256
35be

32
7b2

e

48
35be

0 ÿ128
35be

32
35

asy 0 ÿ79
35be

0

2666666666664

3777777777775
;

Be
5 � D22

5092
35b3

e

1138
35b2

e

ÿ512
5b3

e

384
7b2

e

ÿ1058
35b3

e

242
35b2

e

332
35be

ÿ128
5b2

e

64
7be

242
35b2

e

38
35be

1024
5b3

e
0 ÿ512

5b3
e

128
5b2

e

256
7be

ÿ384
7b2

e

64
7be

sym 5092
35b3

e

ÿ1138
35b2

e

332
35be

26666666666664

37777777777775
;

Be
6 � qH

523be

3465

19b2
e

2310
4be

63

ÿ8b2
e

693
131be

6930

ÿ29b2
e

13860

2b3
e

3465

2b2
e

315

ÿb3
e

1155

29b2
e

13860

ÿb3
e

4620

128be

315
0 4be

63

ÿ2b2
e

315

32b3
e

3465

8b2
e

693

ÿb3
e

1155

sym 523be

3465

ÿ19b2
e

2310

2b3
e

3465

266666666666664

377777777777775
:

The elements of vector Fe in Eq. (19):

F e
i �

Z be

0

q�y�ni�y�dy:
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