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Abstract

In this article, an extension of the strip element method has been developed to investigate the transient response of
symmetric laminated plates. In this method, the two-dimensional governing equations based on the classical laminated
plate theory is reduced to a set of ordinary differential equations using the principle of minimum potential energy. The
resulting set of ordinary differential equations are then solved analytically to obtain the dynamic responses in the
frequency domain. The Fourier transform technique is then used to obtain the time domain response. An exponential
window method is employed to avoid singularities associated with Fourier integration. Transient responses of a
rectangular symmetric laminated plate are presented for various loading and boundary conditions. The results obtained
using the strip element method were found to compare favorably with exact or analytical solutions available in the
literature. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The transient response of laminated composite plates to dynamic loading has received much attention
from designers due to increasing applications of composite in high performance aircraft, vehicles and
vessels. In the analysis of laminated plates, which are subjected to dynamic loading, the classical laminated
plate theory (CLPT) (e.g., Reddy, 1997) is widely used due to its simplicity. More complex plate theories
have also been used, such as the first-order shear deformation theory (FSDT) (Whitney, 1969; Whitney and
Pagano, 1970; Reissner, 1972), the third-order laminated theory (Reddy, 1984b) and others (Reddy,
1984a.b, 1985).

It is very difficult to obtain the exact solution for the dynamic response of laminated composite plate.
Currently, the exact solution can only be available for certain plate theories applied to simply supported
rectangular plates (Khdeir and Reddy, 1989). As a result, approximate methods have been proposed for
dynamic analysis of the laminated plates.
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Currently, most of the works available in the literature are for plates with simply supported boundary
conditions. Lu (1996) employed the Rayleigh-Ritz method and the method of superposition of normal
modes to calculate the dynamic response of laminated angle-ply plates with clamped boundary conditions
which are subjected to explosive loading. However, numerical methods have to be used if the problem
involves complex geometries and boundary conditions.

Many numerical methods have been proposed for the dynamic response analysis of plates. Out of these
methods, the finite element method (FEM) has become the universally applicable technique for solving
boundary and initial value problems. Various types of thin-plate bending elements have been discussed
(Zienkiwicz, 1977; Reddy and Miravete, 1995). In the past years, Reismann (1968), Reismann and Lee
(1969) and Lee and Reismann (1969) have analyzed simply supported rectangular isotropic plates, which
are subjected to suddenly applied uniformly distributed load over a square area on the plate. The transient
finite element analysis of isotropic plate was also carried out by Rock and Hinton (1974) for thick and thin
plates. Akay (1980) determined the large deflection transient response of isotropic plates using a mixed
FEM.

As for composite plates analysis, Reddy (1983) presented finite element results for the transient analysis
of layered composite plates based on the FSDT. Mallikarjuna and Kant (1988) presented an isoparametric
finite element formulation based on a high-order displacement model for dynamic analysis of multi-layer
symmetric composite plate.

Although FEM is an extremely versatile and powerful technique, it has certain disadvantages: large
quantities of input data make implementation tedious, and one is often compelled to employ automatic
mesh and load generation schemes; many lower order elements will not yield acceptable stress results,
necessitating the use of stress averaging or interpolation; and computer core requirement can often be
extremely large. Thus, there have been efforts to formulate alternative methods, which lead to the devel-
opment of the finite strip method (FSM) (Cheung, 1976) and boundary element method (BEM) (Beskos,
1987). The BEM has been successfully used for a great variety of problems, though a major deficiency is
that it is difficult to apply for anisotropic and inhomogeneous solids, as there are no simple applicable
Green’s function available.

Since then, Liu and Achenbach (1994, 1995) proposed the strip element method (SEM) which has been
successful in solving plane-strain problems. Subsequently, Wang et al. (1997) developed the SEM for static
bending analysis of orthotropic plates. The purpose of this article is to further extend the SEM for transient
analysis of symmetric laminated plates. SEM formulations for dynamic analysis of laminated plate were
derived, and a SEM program was developed. The program is first used to investigate the dynamic response
of the plate in the frequency domain. The Fourier transform technique is then employed to obtain the time
domain response, and an exponential window method is introduced to avoid the singularities from Fourier
integration. The transient responses of rectangular symmetric laminated plates are presented for various
loading and boundary conditions. The results obtained using SEM are compared with exact or analytical
solutions. Very good agreements of this comparison were observed.

2. A brief of plate theory for laminates

Consider a thin plate as shown in Fig. 1. The plate consists of K layers of fiber reinforced laminated
composite lying in the x—y plane, and the overall thickness is denoted by H. The reference plane z=0 is
located at the undeformed mid-plane of the plate. The z axis is taken as positive upward from the mid-
plane. The kth layer is located between the points z =z, and z = z; in the thickness direction and its
principal material coordinate oriented at an angle, oy, to the laminate coordinate x as shown in Fig. 2.

Let u, v and w denote the displacements in the coordinate directions of x, y and z, respectively. The
displacements «# and v can be expressed by w according to the following CLPT:
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Fig. 1. The coordination system of the composite laminated plate

*y

0
L.

I a
(1)

Fig. 2. Geometry and coordination system of the kth layer of a rectangular plate in the x—y plane with fiber orientation of o.

ow
Uu=—z— V= —z—.
Ox’ dy
The strain—displacement relations for the plate can be written in the matrix form as
)

Ex
g, » =—zLw,
'))xy
where
0? 0?

62
L'=|— = -
ox? 0y*  OxOy
is the differential operator matrix with superscript T denoting transposed matrix.
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According to generalized Hooke’s law, the stress—strain relation for the kth layer in the laminate co-
ordinates is

k k

Ox Qll le le Ex . &x
Oy =10Qn On O & p =09 & o, (4)
Ty O35 Oy 0Oy Vay Vay
where QF is given by
Qk — TQkTT, (5)
I m? Im
T=| n’ 2 —Im |, (6)

—2lm 2lm P —m?

[ = cosuoy, m = sino. (7)

In Eq. (5), QF is the matrix of material constants for the kth layer in the principal material coordinates with
its components are defined as

Qe = G2, Q16 = 0% =0, (8)

where E| and E, are Young’s moduli in the directions parallel and perpendicular to the fibers, respectively;
G, 1s the shear modulus and vy, and v,; are Poisson’s ratios.

In the present study, only symmetrically stacked laminates are considered. As such, the transverse
bending and in-plane stretching are decoupled. The bending moment vector can be written as follows:

M,
M, 3 = —DLw, (9a)
M,,
oM, oM, oM., oM,
_ X Xy — Xy -y 9b
Q=7 "% @=% T (9b)
where the matrix D is the coefficient matrix of the bending stiffness, which is given as
Dy Di Dis
D= (D Dy Dy|, (10)
Dis Dy Des
where
1. -
DU:§;(QU)I((22 72271). (11)

The lateral mid-plane deflection of the thin plate is assumed to satisfy the governing partial differential
equation:
otw o*w otw o*w otw *w
=Dy—+4Dg——+2(D 2Dg6) =——=— + 4D —— + Dpp— H— —
W =Dugg+4Dugsg,+ D+ 2Dw) 555 +4Dug 55+ Dag g+ pH 57 =4

where ¢ is the distributed transverse force on the plate.

=0, (12)
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3. Formulation of strip element method

To use the SEM in the vibration analysis of a rectangular plate, an infinite length plate is first considered.
As shown in Fig. 3, the infinite length plate occupies the region of —oco <x < oo and 0 < y < b, whereas the
problem domain is bounded by —a/2<x<a/2, 0<y<b and —H/2<z< H/2. The boundaries are de-
noted by S;, S,, S; and S4. The infinite plate is divided in the y direction into N strip elements. The dis-
placement field in an element is assumed to be of the form:

w=N)V(x,1), (13)
where matrix N(y) and vector V°(x) are given by
N)=[my) m@) mb) nb) ns) nB)], (14)

Ve(x,t) = [wi(x, 1) 01(x,) wa(x,1) O(x,1) ws(x,1) 0s5(x,0)]"
=[vi(x, 1) va(x,0) 03(x,2) wva(x,0) ws(x,1)  wve(x, )] (15)

and w; (i = 1,2, 3) are the lateral deflections on the node lines. ; (i = 1,2, 3) are the rotation angles on the
node lines as given by 0; = 0w/0y|,_,. The elements in matrix N(y) are obtained using Hermite interpo-

lation functions (Wang et al., 1997):

2 3 4 5
m(y) =1 — 232 4662 — 682 + 242,
2R bt TR
2 3 4

n(y) =y<1 — 65+ 13173_ 12b—3+4b_g)’

2 3 4
Y Y Y

2 3 4
Y Y Y Y
ny(y) —y<—8be+32b2—40b3+ 16b4>’

(16)

ooy oy Ly

2 3 4

Y Y Y Y

=yl ——+5=—-8—+4—

) =5{ =SSy )
where b, is the width of the strip element.
y
A
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Fig. 3. The infinite plate is divided to strip elements in y direction, whereas the region bounded by S;, S,, S; and S, is the problem

domain.
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Generally, the term, W, in Eq. (12) is not zero when the displacement field is expressed as in Eq. (13). By
applying the principle of minimum potential energy to the strip element in the infinite plate, we obtain the
following equation:

be

wdwdy + R, 5V°(x, 1) = TSV*(x,1), (17)
0

where
oM, oM,
R, = [ — (a—x”‘JrQy) M| _, 00 ( +Qy>

and T is the external traction vector acting on the boundary lines of the element. Using Egs. (9) and (12),
(13), (17) and (18), we can obtain a set of approximate ordinary differential equations for an element (Wang
et al., 1997):

otye 3V *ve ore Ve

Bt B B+ BV By~ F =T (19)

-, | (1)

y=0 y=be

B o
In the above expression, the matrices B}, BS, B and B; are symmetric, whereas B5 and Bj are anti-
symmetric. The coefficient matrices B; (i=1-6) and force vector F° due to the distributed load ¢ are shown
in Appendix A. By assembling all the strip elements of the domain, a system of approximate ordinary
differential equations for the whole domain can be obtained:
otV i 4 Gl 4 14 Gl 4
—+B,—+8B B BsV + B =P 20
8x4+26x3+362+48+5+662‘2 (20)
in which P =F + T, and T expresses the vector of concentrated force on the node line. The matrices
B; (i = 1-6) and F can be obtained by assembling the corresponding matrices of adjacent elements as in the
FEM. If the plate is divided into N strip elements, then B; (i=1-6) will be M x M (M = 4N + 2) matrices.

B,

4. Solution in the frequency domain

Eq. (20) is a set of fourth-order differential equations, where V and P are functions of x and ¢. To solve
this equation, the Fourier transformation with respect to the time ¢ is introduced:

Vix,w)= /OC V(x,t)e " dt, (21)
P(x,0) = / " P(x,1)e " ds, (22)

where w is the angular frequency and “~”’ stands for a variable in the frequency domain. Application of the
Fourier transform to Eq. (20) leads to the following ordinary differential equation:
a‘v v d’v 14 _ _
B B B B BsV — o’BgV = P. 23

ldx+2dx+3dx+4dx+5 " bg (23)
This equation can be solved analytically. Its general solution has two parts, which are the complementary
solution which satisfies the associated homogeneous equation of Eq. (23), and the particular solution which
satisfies Eq. (23).
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4.1. Complementary solution

The complementary solution can be obtained by solving the associated homogeneous equation of Eq.
(23) (P = 0). Assuming

V = d, exp (ikx) (24)
and substituting it into the homogeneous equation of Eq. (23). Thus, we have the following equation:
(k*B, — ik’ By — kB3 + ikBy + Bs — 0’ Bg)d, = 0. (25)
This equation can be converted to a standard eigenvalue equation with respect to k:
0 1 0 0 d I 00 O d
A R s
~Bs +w’Bs —iB, B; iB, | | Kd, 0 0 0 B Kd,

Eq. (26) can be solved to obtain 4 eigenvalues k; (j =1,2,...,4M) and eigenvectors, which are the
functions of w. The first quarter of the jth eigenvectors corresponds to vector d;, and is denoted by vector
®; (w), where

() ={dy ¢p - du}. (27)
The complementary solution for the displacement can be written by superposition of these eigenvectors as

shown below:

Ve(x,m) = ZCj(a))@j(w) exp (ikix) = G(x, w)C(w), (28)

=1

where superscript ¢ indicates the complementary solution and

¢11 exp (%klx) $y1 eXp (%kzx) o P exp (%ka)
e o) = D12 eXI:) (ik1x) ¢y eXI:) (ikox) -. 12 exI:) (ikrx) 29)
Do XD (ih13) oy exp(ihx) -+ by exp (i)

with L = 4M. In Eq. (28), C is a constant vector, which will be determined by using the boundary con-
ditions on S, and S, after the particular solution is obtained.

4.2. Particular solution

In order to obtain the particular solution of Eq. (23), the Fourier transformation with respect to co-
ordinate x is introduced as follows:

V' (k,0) = /oc VP (x, w)e ™ dx, (30)
I:’p(k, W) = /OO PP (x,w)e " dx, (31)

where superscript p indicates the particular solution and “~stands for a variable in the transform domain.
Application of the Fourier transform to Eq. (23) leads to the following equation in the transform domain:
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P=[i*B, —ik’B, — i°B; + ikBy + Bs — o *Bg| V" . (32)
This equation can be rewritten as
p=[A— kB, (33)
where
=TT = = = T
={o 00 —P } , dz{VpT et k3VpT} : (34)
0 1 0 0 I 00 O
0 0 I 0 01 0 O
A= 0 o o 1| B=loo1 o0 (35)
7B5 + (,0236 7iB4 B3 IBQ 0 0 O Bl
Applying the modal analysis technique (Liu and Achenbach, 1995), we arrive at
4M L R
I i (36)
m=1 (km - k)Bm
where
B, = ¢VEB¢Z (37)

and the eigenvalues &, left eigenvectors qﬁz and right eigenvectors anRl corresponding to the homogeneous
equation (33) can obtained by solving the following equations:

¢-[A —k,B) =0,  [A—k,B]pt =0. (38)
The (;557 and (;5; can be partitioned in the form of
P
d)R
m2
(’52 = [ 4’51 = {(15121 4’52 4’;3 ‘15124 }7 (39)
d)mS
Bra

where ¢m (i=1,2,3,4) and (f);j (j = 1,2,3,4) have the same dimension. From Egs. (34), (36) and (39), we
obtain

7 (k) Z¢m4” ¢>m1 (40)

Once the external load is specified, the vector of the load Fourier transformation P can then be obtained. By
applying the inverse Fourier transformation to Eq. (40), the particular solution of Eq. (23) can be obtained as

e > 4M Pns Py} 1 ke
(k, )e*rdk = Pua Pt giks i 41
P(x, ) 211:/ P w)e™d / U= kB d (41)

The general solution of Eq. (23) is the sum of the complementary solution given by Eq. (28) and the
particular solution given by Eq. (41):

Vix,w) = V(x,0) + FP(x,0) = G(x,»)C(w) + V°(x,w). (42)
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4.3. Determination of constant vector C using boundary conditions

Eq. (42) gives the fundamental solution for the infinite plate, in which the constant vector C with 4 M
elements is unknown. To obtain a special solution for the problem domain, the boundary conditions on S,
and Sy have to be used to determine the constant vector C. There are 2N + 1 node lines and two boundary
conditions on each node line can be obtained from the CLPT. The boundary conditions in CLPT are
summarized as follows:

w=0, Z—W =0 (for the clamped edges), (43)
x
P*w :
w=0 P 0 (for simply supported boundary). (44)
X
As for free boundary conditions, it follows that
oM,
M, =0 <4 = 0. 45
X Y ay + QX ( )

Therefore, there are only 2M boundary conditions on S, and S,, which is insufficient to determine the 4 M
constants. Additional 2M boundary conditions are therefore needed. Wang et al. (1997) developed the
boundary conditions in SEM for orthotropic plates, where the additional boundary conditions to be in-
troduced are

o0
0=0, P 0 (for clamped boundary), (46)
%0 .
0=0, P 0 (for simply supported boundary), (47)
X

dy Jy
It can be shown that these boundary conditions can also be applied in this work; thus, the boundary
conditions in SEM are summarized as follows:
Clamped supported boundary

oM, _, @ <6Mxy

= 5 + Qx) =0 (for free boundary). (48)

. dv
V=0 —=0. 49
LT (49)
Simply supported boundary
. a*v
Free boundary
. oM, - oM, o (oM,
M. = - = = — i = 1
i T < 5t Qx> 0, (s1)

where the vectors express the corresponding values on the node lines in the frequency domain. Hence, the
constant vector C can be determined using the above boundary conditions, which gives the exact number of
boundary conditions. Thus, the responses in the frequency domain can successfully be obtained.
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5. Solution in the time domain

The inverse Fourier transformation to Eq. (42) gives the solution in the time domain:

I (> .
V(x,t) :E/ V(x,w)e” dw. (52)

—00

The integration of Eq. (52) usually has to be carried out numerically. However, for the undamped plates as
considered in this article, difficulties with the integration result from singularities of ¥ (x, ») at @ = 0 and at
the cut-off frequencies (k=0), as discussed by Vasudevan and Mal (1985). To overcome these difficulties,
the exponential window method (EWM) is used. Liu and Achenbach (1994) calculated the response of wave
scattering in an infinite plate using the EWM. The basic idea of the EWM is to introduce a complex fre-
quency, @ — i, by adding to it a small imaginary part, in, where w is real and # is positive and does not
depend on w. Hence, the Fourier transform pair given by Egs. (21) and (52) can equivalently be written as

V(ix,ow—in) = / e V(x,t)e " dt, (53)

Vix,1) = % / N V(x,o —in)e do, (54)
and the Fourier transform of external force in Eq. (22) is

Ple,o —in) = / " e P, ) dt. (55)

It is to be noted that the w in Egs. (23)-(42) should be replaced by w — i.
Generally, the external force is loaded on the plate only for a certain time duration in the transient
analysis; thus, Eq. (55) takes the form

tq .
P(x, 0 —in) = / ¢ P(x, f)e d1, (56)
JO

where 7, is the duration of the external force. Eq. (54) is used to obtain the displacement response in the
time domain, which avoids the singularity of ¥ (x, w).

6. Numerical examples

The transient analyses of anisotropic laminated composite plates are carried out by using a SEM pro-
gram written in FORTRAN 77. In the present study, zero initial conditions are assumed.

Example 1. Considering a three-layer cross-ply (0°/90°/0°) square laminated plate, where all layers are
assumed to be of the same thicknesses and material properties. The material properties are given as
E; =172.369 GPa, E,=6.895GPa, G, =3.448 GPa, v;, =025 p=1603.03 kg/m’.

The total thickness of the plate is taken to be H = 3.81 cm, and the length of the plate is a = b = 20H.
The load is sinusoidally distributed on the whole surface of the plate and varies with time according to
one of the expressions given below:

. 1 .
q(x,,t) = qo smn‘(i—g) sin %F(t)7 (57)



Y.Y. Wang et al. | International Journal of Solids and Structures 38 (2001) 241-259 251

3.0 3.0
Fit)
1 F(t)
25 1 251 1
0 t
20 F 0 t
2.0 -
151
15 1o}
wi(em) w(cm)
10| 05}
0
05
0.5k \/
0 W
V -1LO+
-0.5 L L L L L L L 15 L L L L ! 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
time(sec) time(sec)
(a) step loading (b) triangularlar loading
2.0 2.5
F(t)
20 [ 1
15
‘
15 0
1.0
10 F
w(ecm) 0.5 w(em) 0.5
0
0
0.5
0.5
1.0 [
-1.0 1 1 1 1 1 1 1 15 1 1 1 1 1 1 1
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008
time(sec) time(sec)
(c) sine loading (d) explosive blast loading

Fig. 4. Time history of the center deflection for simple supported [0°/90°/0°] square laminated plate under various loading. A com-
parison of the SEM solution (the real line) and exact solution (the cross).

{ sin(nt/t;) 0<t
0 t>1

} sine loading,

1 0<r<t .
F(t) = { : } step loading,
0 t>4 (58)
1 —t¢/t 0t . .
{ ( /h) 1 } triangular loading,
0 t>1
e explosive blast loading,

in which #; = 0.006 s and y = 330 s~'. The intensity of the transverse load is taken to be gy = 3.448 MPa.
The integration in Eq. (41) for a line load acting at x = x( can be easily obtained using Cauchy’s theorem
(Wang et al., 1997), and the particular solution is given as
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Fig. 5. The time history of the dimensionless normal stress &,,versus time for simple supported [0°/90°/0°] square laminated plate under
step loading. Comparison of the SEM solution (the real line) and exact solution (the cross).

R+
Z ml lk+()(*x0>, x =X
- _
Vo) =t ¢L_ Pyt (59)
Z _1"‘476 ki (X—X0), x < X0
m=1 Bm
where “+” denotes variables corresponding to the positive real eigenvalues or complex eigenvalues with
positive imaginary part, whereas “—”" denotes variables evaluated for the other cases of the eigenvalues.
In the case of a distributed load in the x direction
px,y,1) = f(x)p(r,1), (60)
the particular solution can be obtained from the following integration:
~ ' af2 M P PORT
yr — / ml 1k;;(x—x0)dx +/ f(x) —i mé4 R ml elk,;(x—xo)dx. (61)
—a/2 Z X ; Bm

Thus, the particular solution for the sinusoidally distributed load expressed by Eq. (57) can be carried
out using Eq. (61), which is given as:

LS o __ 1 ik, (¥—a/2)
Zl m4P¢m1 Esin & — ik, cos T —Te

p 2
*(k,;)2+ (%)
2M LJr R s L+ ik, (x+a/2)
sm — ik, cos B+ Tt
+ E i Put s - 3 (62)
—(k$)* + (%)

Fig. 4 shows the time history of the transverse deflection at the center of the plate for various loads. The
comparisons of the SEM results with exact solutions (Khdeir and Reddy, 1989) are shown. From Fig. 4, it
is observed that the SEM solutions are in very good agreement with the exact solutions.
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Fig. 6. The time history of the deflection on the center of the [30°/—30°/—30°/30°] square laminated plate, which is fully clamped and
subjects to conventional blast. Comparison of SEM solution (the real line) and Rayleigh-Ritz solution (the cross).
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Fig. 7. The time history of the center deflection of the [30°/—30°/—30°/30°] square laminated plate which subjects to conventional blast.
The plate is clamped at two opposite edges and simply supported at the other two edges.
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The stress responses in the time domain can be obtained from the displacement distribution using a
similar method as for the deflection response. The normal stress response in time domain for sine loading
and the comparison of SEM solutions with exact solutions are given in Fig. 5, in which the dimensionless
normal stress is defined as

O = axx(a/27b/2,H/2)/q0. (63)

Again, a very good agreement is achieved. It can be seen that the stress response curve is very similar to the
displacement response curve. This conclusion is similar for other load cases.

Example 2. A four-layer angle-ply square laminated plate with symmetrically stacking sequences (30°/—30°/
—30°/30°) is considered. All layers are assumed to have the same thicknesses and material properties given
by

E; =131.69 GPa, E,=28.55GPa, G, =6.67 GPa, v;;=0.3, p=1610kg/m™.
The dimensions of the plate are
a=127Tm, b =127m, H=0.0254 m.

The plate is subjected to a conventional blast while the pressure can be considered uniformly distributed
over the plate, which can be expressed as

t
Q(Xa% t) = qo(l _t_>eotl/lp’ (64)
p
where the parameters in Eq. (64) are taken as
o=198, ¢ =4ms, go=06895kPa.
These data are taken from Lu (1996).
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Fig. 8. As in Fig. 7, but the plate is clamped at two opposite edges and free at the other two edges.
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Fig. 9. The deflection of the [30°/—30°/—30°/30°] square laminated plate which subjects to conventional blast. The plate is clamped on
edges S; and S; and simply supported on edges S, and S,.

For the uniformly distributed external load along the x axis, the particular solution in Eq. (41) is given as

o _ SRGuPOLL S 1 SR Pl et -
B m=1 B; k,ﬁ B,; k= :

The results for the fully clamped plate are shown in Fig. 6. The comparison with Lu’s results using
Rayleigh—Ritz method shows a good agreement.

The effects of the boundary conditions of composite laminated plates have been shown in Figs. 7 and 8.
Fig. 7 shows the deflection versus time of the square composite laminated plate for two boundary condition
cases: (1) S; and S; clamped, S, and S; simply supported; (2) S; and S; simply supported, S, and S,
clamped.

It is known that the deflection and frequency of a square isotropic plate are the same for the above two
boundary condition cases. However, this is not true in the case of composite laminated plates, in which
both the deflection and frequency are different for the two types of boundary conditions. This fact can also
been found from Fig. 8, in which two boundary condition cases for the square composite laminated plate
are: (1) S; and S; clamped, S, and S, free; (2) S; and S; free, S, and S4 clamped.

(65)

m=1
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Fig. 10. As in Fig. 9, but the plate is simply supported on S; and S; and clamped on S, and S,.

The deformation of the plate at different times is shown in Figs. 9 and 10, in which the plate was clamped
on two opposite edges and simply supported on the other two edges. In these figures, the transverse de-
formations have been increased in scale. It is found that the deformation distribution is different for those
two types of boundary conditions also. From the above discussion, it is concluded that the composite
laminated plates must be designed carefully according to the boundary conditions of the practical appli-
cations.

7. Discussion and conclusions

The SEM for the dynamic analysis of laminated composite plates has been presented based on the
CLPT. This method has many advantages:
1. It requires a small memory during computation.
2. It requires fewer elements to achieve the required accuracy. In this article, only four elements are used.
3. The SEM achieves a high accuracy as both deflection and rotation angle are continuous along the node
lines.
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4. Generally the integration in Eq. (41) for a distributed load of a given function can be carried out ana-
lytically. This also improves the accuracy of the SEM solution.

When the SEM is applied to transient analysis of laminated composite plates, the Fourier transform
technique is used to investigate dynamic response in the frequency domain, and the time domain response is
obtained using the inverse Fourier transformation. An exponential window method is introduced to avoid
singularities in the Fourier integration. Numerical solutions obtained for laminated composite plates with
various loading and boundary conditions indicate that SEM is a very accurate numerical method.

Appendix A

Matrices in Eq. (19):

(5236, 1962 4b, =862  131b.  —29h27]
3465 2310 63 693 6930 13860
2b3 22 —b} 2952 —b}
3465 315 1155 13860 4620
120, 0 4be —2b?
e 315 63 315
B, =Dy, , s K
323 82 —B3
3465 693 1155
523b,  —19b2
Sym 3465 2310
2b3
L 3465 J
[0 b 8 3% 5 —be T
630 21 315 2 90
0 8h,  —2b7 be —b?
315 315 9% 126
0 G4 8 —8be
[
BS = 4D, 315 21 3152 ,
as 0 3% 2
y 315 315
23b,
0 630
0
r-278 —118 256 -8 2 1 7
105, 210 1056, 21 1056, 70
=2be =8 4be =1 be_
45 105 315 70 126
—512 256 -8
1055, 1056 105
B; = 2D12 ¢ ¢
—128b, 8 4b,
315 21 315
278 118
Sym 1056 210
—2b,
L 45
r—278 —13 256 -8 2 1 7
105, 210 1056, 21 1056, 70
—2b. =8 4be -1 be
45 105 315 70 126
512 256 -8
105b, 1056, 105
4D,
+ Do “1285 8 |’
315 21 315
—278 13
sym 105b. 210
—2b,
L 45
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ro =2 32 128 -32 31 1
35h b7 35be 76 35be
0 =% 32 -31 11
35b, 35 35b. 70
0 =26 32 48
e 35b, 7b 35b,
B4 = 4D26 N ¢ N s
0 128 32
35b. 35
~79
asy 0 355,
L 0

rs092 1138 =512 384  —1058 242
3563 352 5b3 7b2 353 352
332 —128 64 242 38
35b, sp2 Tbe  35b2 35b,
1024 0 =512 128
563 5b3 562
Be — D e € e
5T 26 -3 64 |
7be 7b? Tbe
5092 1138
Sym 35b3 35b2
332
L 35h -
(5236, 1962 4b,  —8b2  131h,  —29b%7]
3465 2310 63 693 6930 13860
263 262 —h} 298 —b}
3465 315 1155 13860 4620
128b, 0 4be 262
e 315 63 315
B6 = pH 3 2 3
3263 852 -b}
3465 693 1155
523b,  —1952
Sym 3465 2310
203
L 3465

The elements of vector F° in Eq. (19):

Fe= / ") dy.
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